
MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 120, OCTOBER 1972 

Monotonicity and Iterative Approximations Involving 
Rectangular Matrices 

By Robert J. Plemmons' 

Abstract. A new characterization of row-monotone matrices is given and is related to the 
Moore-Penrose generalized inverse. The M-matrix concept is extended to rectangular 
matrices with full column rank. A structure theorem is provided for all matrices A with 
full column rank for which the generalized inverse A+ > 0. These results are then used 
to investigate convergent splittings of rectangular matrices in relation to iterative techniques 
for computing best least squares solutions to rectangular systems of linear equations. 

1. Introduction. An n X n real matrix A is monotone if Ax > 0 implies x ? 0. 
It was shown by Collatz [3] that A is monotone if and only if A is nonsingular and 
A` > 0. An important class of such matrices includes the M-matrices. Let M > 0 
be an n X n matrix and a be a real number. Then a matrix A of the form 

(1.1) A = aI - M 

is called an M-matrix if a > p(M), where p(M) is the spectral radius of M. It is well 
known [4] that A of the form (1.1) is an M-matrix if and only if A` > 0; that is, 
A is monotone. 

Monotone matrices have been studied extensively and the results have been 
applied to the study of finite difference approximations by authors such as Bramble 
and Hubbard [2], Collatz [4], Price [8], Varga [9], and Young [10]. Such systems 
frequently arise in the numerical solution of elliptic partial differential equations. 
An extensive theory has been developed which is important mathematically while 
at the same time it is of practical use. Thus far, these concepts have been applied 
only to the study of linear systems in which the coefficient matrix is square and non- 
singular. 

In [1], the study of singular matrices having monotone properties was initiated. 
Some conditions were given in order that a real m X n matrix A have a nonnegative 
Moore-Penrose generalized inverse A' [7]. The concept of monotonicity was ex- 
tended to row-monotonicity and it was shown that if A' > 0 then A and AT are 
row-monotone, although the converse of this statement does not hold in general. 

The purpose of this paper is to extend some of the results in [1] and to apply 
these ideas to the study of linear systems whose coefficient matrix satisfies a gen- 
eralized form of monotonicity. In Section 3, a new characterization of row-monotone 
matrices is given. Section 4 is concerned with an extension of the M-matrix concept 
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to rectangular matrices and with a characterization of matrices A of full column 
rank for which A+ > 0. It is then shown how these results yield a convergent splitting 
of certain rectangular matrices, leading to iterative techniques for solving rectangular 
linear systems. 

2. Notation and Preliminaries. 
R`L--the n-dimensional real space. 
R+ the nonnegative orthant. that is, the set {x = (x,) C Rnh x, _ 0 

Xn_-the in X n real matrices. 
0-the zero matrix. 

For A C R'x', 
A` the inverse, whenever it exists, 
p(A)-the spectral radius. 

For A E Rmxn, 
AT the transpose, 
@(A)-the range, 
DZ(A)-the null space. 
A = (a) > Oif and only if a, _ > 0 
A -the generalized inverse. 

The generalized inverse A+ is defined by 
A+y = x if Ax = y, x E R(AT), and 
A y = 0 if y E (A ). 

Some of the properties of A+ that are used in the paper will now be summarized. 
If A = HK where H has full column rank and K has full row rank. then A+ = K+H+. 
If A has full column rank, then A+ = (ATA)-lAT. and moreover A+A = I,, the 
identity matrix of order n. 

The following construction will be needed. For any A C Rmxn, with m > n, 
there exist matrices B E RmXn and G E R nXn such that 

A = BG 

where B has full column rank, regardless of the rank, r, of A. To see this, let P be 
a permutation matrix of order n so that PA has r linearly independent rows among 
its first n rows. Suppose that 

a1 

PA a n where a, is the ith now of PA, 

,am 

and let 

alG.J 
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Let C denote the (m - n) X n matrix such that 

an+ + 

CG= 

and finally take PB to be the m X n matrix 

PB= KU 

Then A = BG where B has rank n. A similar method for constructing B and G was 
described in [5]. Notice that 

B+A = G, (R(A) C (R(B) and GR(AT) = GR(GT). 

This factorization is clearly not unique. Now, in case A is of order n, B will be chosen 
to be the identity matrix. 

3. Monotonicity. A matrix A E RmXn is said to be row-monotone if 

(3.1) Ax _ 0, x E (R(AT), implies x ? 0. 

If m = n and A is a nonsingular matrix satisfying (3.1), then A is monotone in the 
usual sense and A` > 0. Moreover, if A is rectangular with full column rank, then A 
is monotone in the sense discussed by Mangasarian [6], who showed that in this 
case (3. 1) is equivalent to the existence of a nonnegative left inverse of A. The general 
case was considered in [1], where it was shown that (3.1) is equivalent to 

(3.2) YA = A+A for some Y ? 0. 

The purpose of this section is to provide an alternate characterization of (3.1). 
As opposed to the nonsingular case, (3.1) is not equivalent to A+ > 0, although A 
satisfies (3.1) whenever A+ > 0. 

Let E be any orthogonal projection in RnXn. That is E2 E F= ET. Then, E+ = E 
can be expressed as E+ = I + (E - I), where, of course, I > 0 and (E - I)E = 0. 
The following theorem shows that all row-monotone matrices share this property. 

THEOREM 1. The matrix A E RmXn is row-monotone if and only if there exist 
matrices B and C such that 

(3.3) A = B+C, B_ O and CA = O. 

Proof. If A. is row-monotone. then from (3.2) there is some Y ? 0 such that 
YA = A+A.ThenA+ = Y-+ (A+ -Y)andtakino,B = Yand C = A+ - Y. B ? 0 
and CA = 0. 

Conversely, if A satisfies (3.3), then A+A = BA + CA BA so that A is row- 
monotone from (3.2), since B> 0. C 

COROLLARY 1. Let B, C E RrXn where B ? 0 and BCT = - CCT. Then, (B + C)+ 
is row-monotone. Conversely, every row-monotone matrix is obtainable in this way. 

Proof. If BCT = - CCT then C(BT + CT) = 0 so that C(B + C)+ = 0, since 

(R(BT + CT) = (R [(B + C)T] = (R [(B + C) ]. 
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The proof then follows from Theorem 1 by taking A = (B + C)+. O 
The section is concluded by considering the special case where A is EPr, that is, 

where m = n and R(A) = R(AT). 
COROLLARY 2. If A C Rnxn is EPr and A is row-monotone, then there exists 

a matrix Y such that A' = YA, Y > 0. 
Proof. Premultiplying (3.3) by B and postmultiplying by A yields 

A+ = A+AA+ = BAA+ = BA+A = B2A + BCA = B2A, 

since AA+ = A+A. Then Y = B2 ? 0. D 

4. Rectangular Splittings. Monotone matrices arise very naturally as coefficient 
matrices for linear systems in connection with finite difference methods for solving 
certain boundary value problems. In particular, the M-matrix concept and regular 
splittings [9], [10] have played a fundamental role in the theory. Research papers 
thus far have considered only the case where resulting linear systems are square and 
nonsingular. In this section, some of these concepts are extended to the rectangular 
case by considering conditions for which the generalized inverse is nonnegative. 

In attempting to extend the concept of an M-matrix to the rectangular case, 
one might try relaxing the requirement that a > p(M) in (1.1). However, this ap- 
proach is somewhat unsatisfactory since it can be shown that if M is irreducible 
and a ? p(M), then each row and each column of A', where A = aI - M, contains 
negative entries. In what follows, the factorization M = BG, where M E Rmxn and 
where B E Rmxn has full column rank, is used to consider a rectangular form of an 
M-matrix. The treatment follows that of Varga [9, Section 3.5]. 

THEOREM 2. Let M ? RmXn m > n, and let M = BG where B C RmXn has 
rank n. If p(G) < 1, then B - M has full column rank and 

(4.1) (B- M)+ = B+ + GB+ + G2B+ + 

the series on the right converging. Conversely, if the series on the right converges, 
then p(G) < 1. 

Proof. Assume p(G) < 1. Then by [9, Theorem 3.7], I - G is nonsingular and 

(4.2) (I- G)[1 = I + G + G2 + 

Then B - M = B(I - G) has full column rank and since B has full column rank, 
(B - M)+ = (I -G)- 1B+, yielding (4. 1). 

For the converse, note that since B+ has full row rank, the convergence of the 
series on the right in (4.1) implies the convergence of the series on the right in (4.2). 
Thus, p(G) < 1. D 

THEOREM 3. Let M C RmXn m > n, and let M = BG, where B ? RmXn has 
rank n. Assume that M > 0 and B+ > 0 and let a be a real number. Then the following 
statements are equivalent. 

(1) a > p(G). 
(2) (aB - = M ( l/a)G'B+ > 0. 
Proof. Notice that aB -M = B(aI -G) and that G = B+M _ 0. 
If (1) holds, then, by [9, Theorem 3.8], aI -G is nonsingular and 

(aI - G) 1= G ? 0. 
,I= a 
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Consequently, since B has full column rank and B+ > 0, 

(aB - M)+ = (aI - G)'B+ = > 1 G'B+ > 0. 
a=0 a 

If (2) holds, then, since B+ has full row rank, 0 (1/ca)G' converges to 
(aI - G)-'. Then since G > 0, (aI -G)-' > 0 so that ae > p(G) by [9, Theorem 
3.8]. 0 

In view of Theorem 3, a matrix A C Rmxn m > n, that can be expressed in the 
form 

(4.3) A = aB - M, M = BG, B E Rmxn of rank n and B+ ? 0 

will be called a rectangular M-matrix whenever ae > p(G). Then a rectangular M- 
matrix A has full column rank and moreover A+ > 0. Now if m = n and B is chosen 
to be I, then the definition reduces to the usual one for square matrices. 

The preceding theorem determines a class of matrices A having full column rank 
for which A+ > 0. In [1, Theorem 2] it was shown that in general A+ > 0 if and only if 

(4.4) Ax E [R+ + X(AT)], x E R(AT), implies x ? 0. 

Then if A has full column rank, (4.4) reduces to 

(4.5) Ax E [R+ + X(AT)] implies x ? 0. 

However, the class of matrices satisfying (4.5) is not easily recognized and no general 
structure theorem for them has previously been given. Thus the following extension 
of a result by H. S. Price [8, Theorem 2.2] could prove useful. 

THEOREM 4. Let A E RmXn and suppose A has full column rank. Then A+ > 0 
if and only if there exists a matrix N such that 

1. M = A + N has ol(N) C (R(M) and M+ > 0, 
2. M+N> 0 

3. p(M+N) < 1. 
Proof. The proof parallels that given for Theorem 2.2 in [8]. If A+ > 0 then N 

can be chosen to be the null matrix 0 so that the above properties are trivially satisfied. 
If A, N and M satisfy 1, 2 and 3 then MM+N = N since @R(N) C (R(M) and since 

MM+ is a projection on (R(M). Moreover (R(A) C (R(M), for if y = Ax then y = 

Mx - Nx E (R(M), so that (R(A) = (R(M) since A has full column rank. Then 

A = M - N = M(I - M+ N). 

Now since M+N > 0 and p(M+N) < 1, I - M+N is an M-matrix so that (I -M+N)- 
> 0. But M has full column rank and M+ > 0 and thus 

A+ = [M(I - M+N)]+ = (I - M+N) 1M+ _ O. El 

The paper is concluded by showing how these concepts can be applied to the 
study of iterative solutions of systems of linear equations. Consider the problem 
of finding an n-vector x which satisfies 

(4.6) Ax = b, 

where A C RrXn has full column rank n. If b C (R(A), then (4.6) has a unique solution, 
otherwise the system is inconsistent. In any case, A+b provides the best least squares 



858 ROBERT J. PLEMMONS 

approximate solution to (4.6). That is, of all vectors x which minimize IlAx - bll, 
A+b has the smallest llxll2. 

For the case where m = n so that A is nonsingular, many iterative techniques 
for solving this problem such as the point Jacobi, Gauss-Seidel and successive over- 
relaxation methods [9], [10] can be obtained by splitting the matrix into the difference 
of two n X n real matrices M and N where M is nonsingular. If A = M - N, then 
the iteration 

x, = MN Nx, + Ml'b 

converges whenever p(M- 'N) < 1. 
Now the splittings discussed in Theorems 3 and 4 hold for rectangular matrices 

and thus can be applied to iterative solutions to (4.6) in the general case. Notice 
that if A is a rectangular M-matrix then since A has full column rank and A + > 0, 
the splitting for A given in (4.3) is a special case of the splitting provided by Theorem 4. 

THEOREM 5. Consider the rectangular system (4.6). If A+ > 0 so that A can be 

expressed in the form A = M - N where A, M and N satisfy 1, 2 and 3 of Theorem 4, 

then the iteration 

(4.7) x,+1 = M+Nx, + M+b 

converges to the best least squares solution A+b to (4.6), for any x,. 
Proof. By the proof of Theorem 4, M has full column rank and since p(M+N) < 1 

by 2, the iteration (4.7) converges to some vector y. Then (I - M+N)y = M+b so 
that (M - MM+N)y = MM+b. But (R(N) C (R(M) by 1, so that MM+N = N. Also 

since (R(M) = (R(A), MM+ = AA+ and thus 

Ay = (M - N)y = (M - MM+ N)y = MM+b = A A+b. 

Theny = A+Ay = A+AA+b = A+b. El 
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